

0

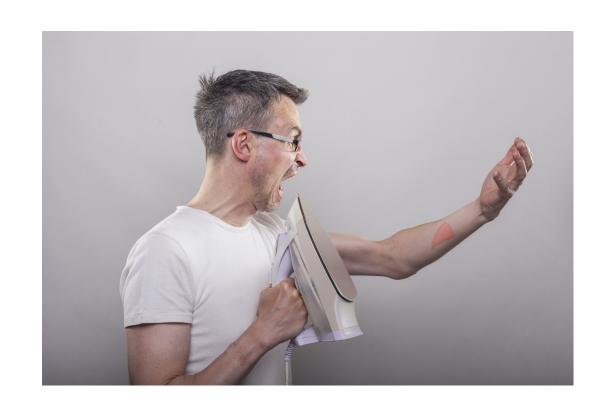
SEPTEMBER 3

UNDERSTANDING
WOUND PAIN:
THE PHYSIOLOGY OF
NOCICEPTORS AND
INFLAMMATION

TAMI SIEWINSKI

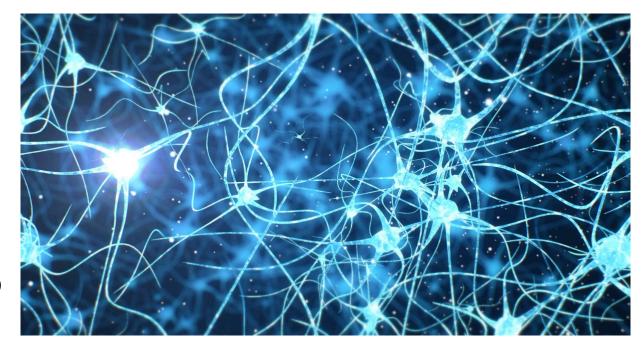
Objectives

At the end of this presentation, you will be able to:


- Define the pathways and impact of nociceptor fibres throughout tissues
- Identify the physiologic changes associated with the inflammatory signalling cascade that directly impacts nociceptor pain signals
- Review therapeutic options to decrease nociceptor stimulation throughout wounded tissues

Pain has its purposes^{1,2}

- Prevents serious injury by eliciting a rapid response to noxious stimulus
- Educates the body on avoidance
- Prevents permanent damage



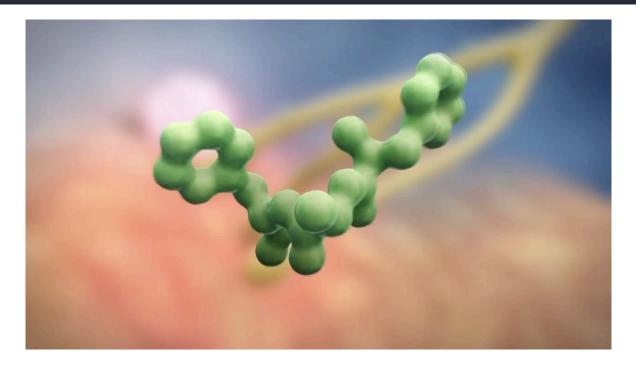
Nociceptor signalling

- Earliest alert system signalling for⁵:
 - Tissue injury
 - Inflammatory diseases
 - Pathogen exposure
- Initiated by nociceptor transduction of stimuli into neuro-electrical signals⁶

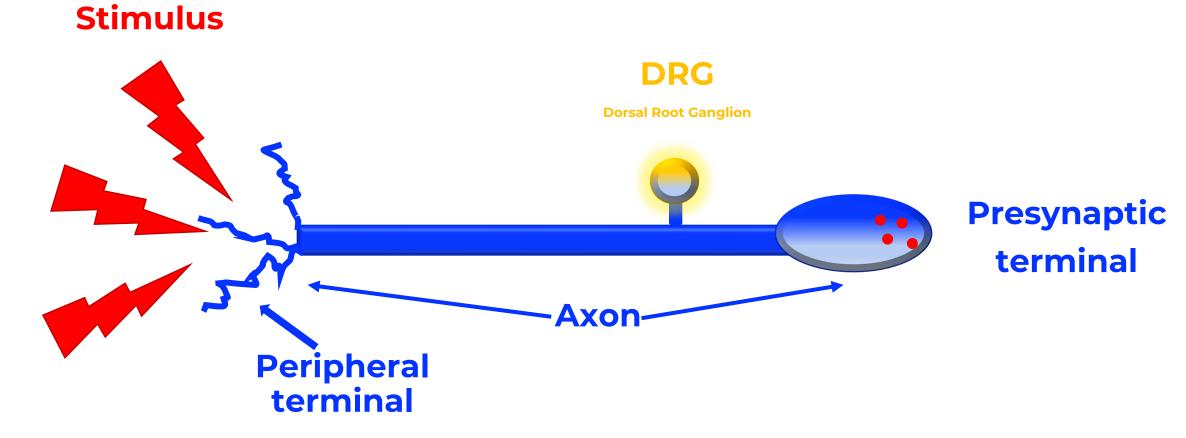
Types of wound pain

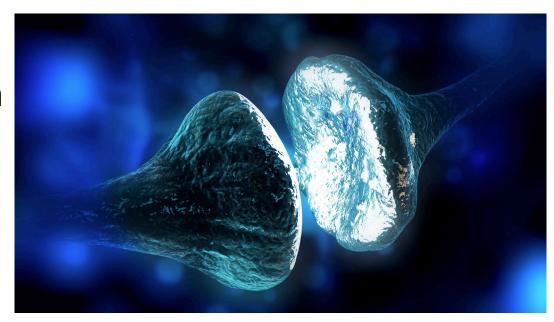
- Nociceptive⁷
 - Physiological response to painful stimulus
 - Serves as a biologic function to warn of injury
 - Somatic sharp, stabbing
 - Onset and duration
 - Acute
 - < 90 days

- Neuropathic⁸
 - Caused by dysfunction or damage in the nervous system
 - Sensory abnormalities from loss of sensation to hypersensitivity
 - Results in inappropriate response and damaged nerves cause signals to travel on abnormal pathways



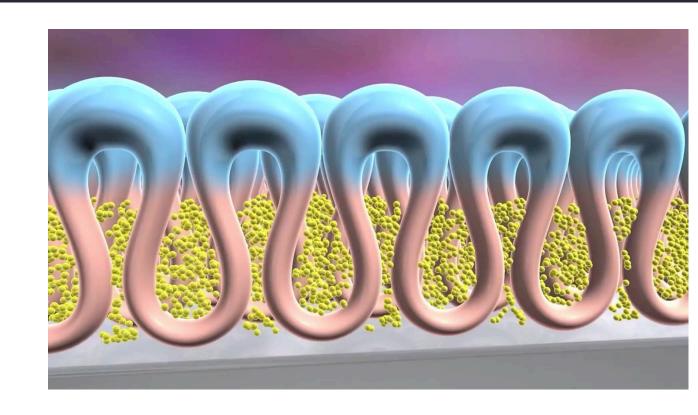
What is a nociceptor?

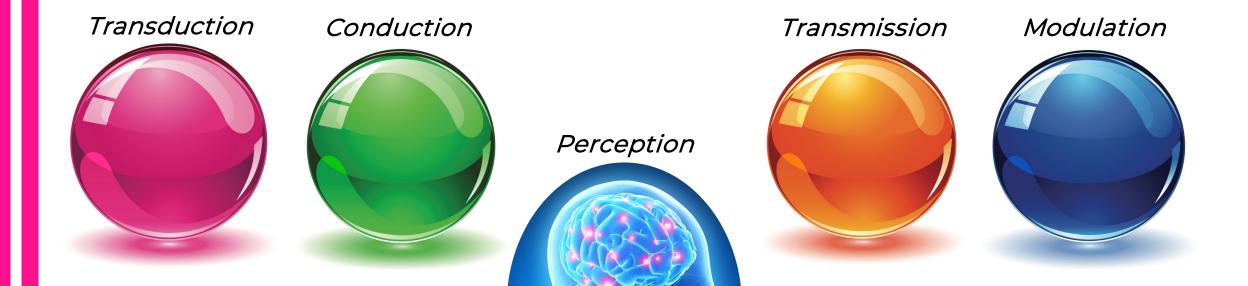

- A free nerve ending that is a receptor for painful stimuli⁹
- Responds to potentially damaging stimuli by sending signals to the spinal cord and brain¹⁰
- Nociceptor system plays the central role in regulating the entire response to injury¹⁰
- Primary job everyday: establish and maintain homeostasis of innervated tissues⁴



Rates of neuronal signal transmissions

- Thicker the nerve fibre the faster the signal
- $A\alpha$, $A\beta$ and $A\delta$ are insulted with a myelin sheath
 - ↑ conductivity
- C fibers are unmyelinated
 - Slower conductivity
- Aδ and C fibers are primarily responsible for pain signaling

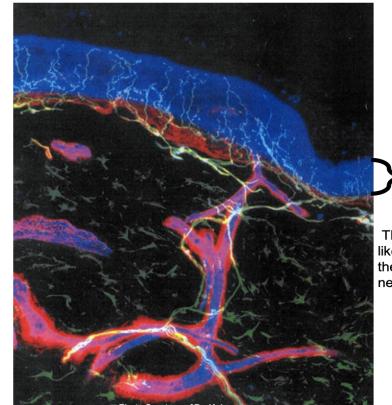




Nociceptor chemical actions and inflammation

- Noxious stimulation creates cellular changes⁵
 - Enzymes released
 - Mediators released
 - Alterations in membrane permeability
 - pH changes
- Stimulation of the inflammatory cascade⁶
 - Histamine and serotonin released
 - ↑ vasodilation
 - ↑ inflammation

5 phases of nociceptive pain¹¹

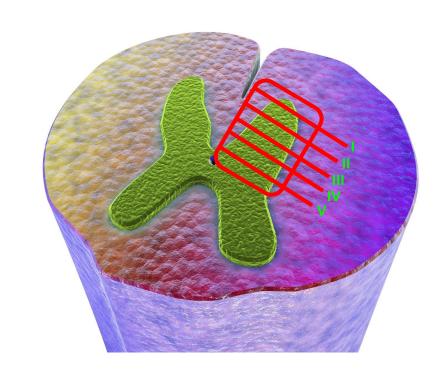


Phase 1 — transduction

- Nociceptor terminals are densely spread throughout skin
- Nociceptive C and Aδ fibres depolarise due to peripheral noxious mechanical, thermal or chemical stimulation
- Proteins and ion channels convert to an Action Potential

Stained photomicrograph of nociceptors

►Epidermis


The lines that look like "lighting bolts" are the inflammatory nerve fibers.

Phase 2 — conduction^{11,12}

- Movement of the Action Potential from the peripheral to the central process
- Depolarisation occurs at the presynaptic terminal
- Interneurons transmit or inhibit transmission through the dorsal horn into specific lamina (I–IV)

Phase 3 — transmission^{11,12}

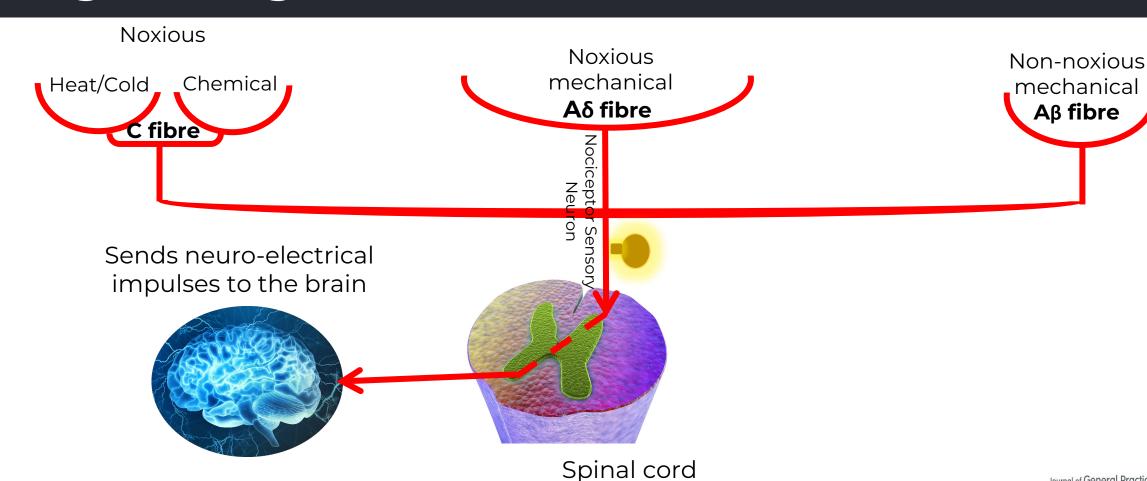
- Aδ and C fibres release pro-nociceptive chemicals to activate post-synaptic receptors
- Results in an influx of ions that depolarise neurons and interneurons
- Creates an Action Potential that is transmitted to the medulla, brain stem and hypothalamus

- Natural adaptive process with both excitatory and inhibitory mechanisms
- Release of neurotransmitters:
 - Enkephalins
 - Dynorphin
 - Endorphins

- Inhibit sensitisation of nociceptor terminals via inhibition of cyclooxygenase
- Inhibit depolarisation and repolarisation of the axonal membrane
- Inhibit the inflammatory response

Phase 4 — modulation via medical interventions^{11,12}

- Adaptive process with both excitatory and inhibitory mechanisms
- Inhibit sensitisation of nociceptor terminals via inhibition of cyclooxygenase
 - Aspirin, ibuprofen, paracetamol


- Inhibit depolarisation and repolarisation of the axonal membrane
 - Local anaesthetics (lidocaine)
- Inhibit the inflammatory response
 - Hydrocortisone
- Stimulate Aβ fibres to induce interneurons to release GABA and glycine
 - TENS

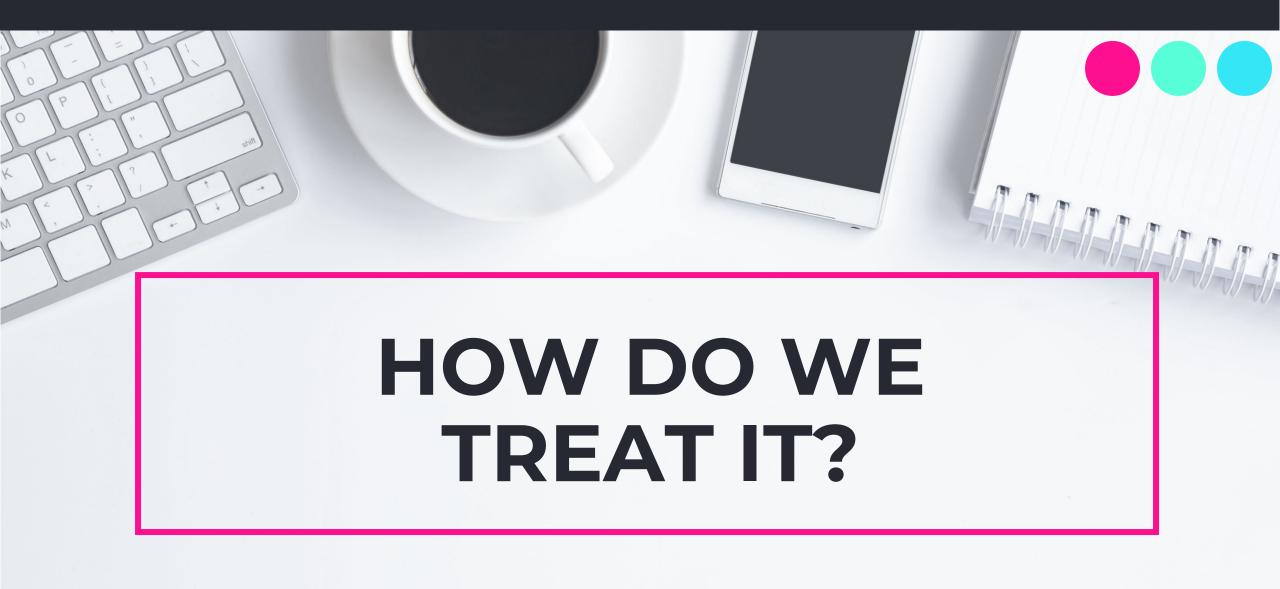
Phase 5 — perception 11,12

- Dependent upon existing neural processing
- Action Potentials are decoded within the brain and interpreted:
 - Bad, unpleasant sensation
 - Localised to a body region
 - Urgency
 - Intensity
- Complete integration of sensations, emotion and recognition of pain

Nociceptive pathway — autonomic signalling^{11,12,13}

Aβ fibre

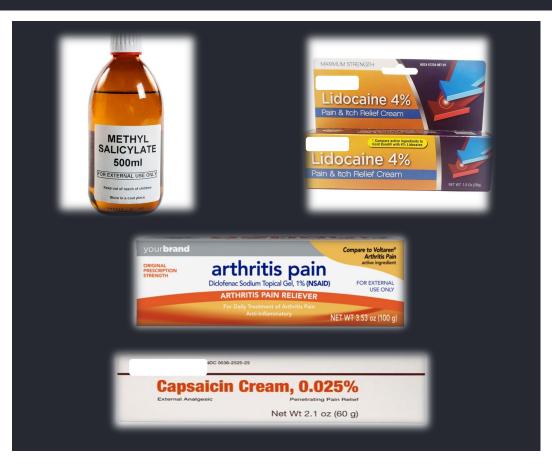
delivering innovation


Correlating the nociceptor response in wounds

- Injury biochemical signalling begins
- Inflammatory signalling is stimulated
- ↑ inflammatory mediators
- ↑ interstitial pressures
- ↓ tissue perfusion
- ↑ tissue hypoxia/ischemia
- ↑ nociception cycle

- Pharmacologic (PO/IM/IV)
 - NSAIDs
 - Tricyclic antidepressants
 - SNRIs
 - Anticonvulsants
 - Opioids
 - Short- and long-acting
 - Muscle relaxants

- Gastrointestinal side-effects
 - Constipation/NVD
- Liver, kidney dysfunction
- Sedation, dizziness
- Coagulopathies
- Hypotension
- Anaemia
- Electrolyte disturbances

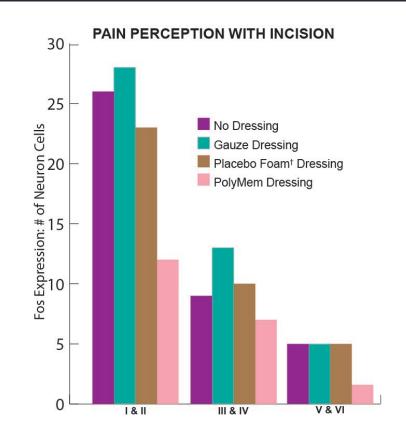

- Dependency/addiction
- Mood changes
- Cardiovascular risk
- Sleep apnea
- Drug tolerance
- Fatal drug interactions
- Non-compliance
- No relief

Most frequently used clinical management options — topical analgesia^{14,15}

- Pharmacologic and OTC (topical)
 - Capsaicin¹⁶ (C fibres)
 - Diclofenac
 - Lidocaine
 - Menthol/salicylate

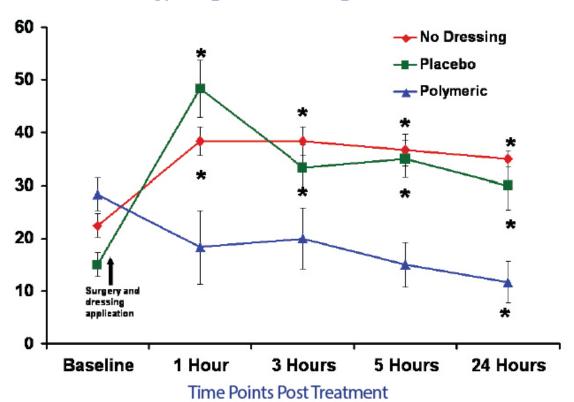
Non-pharmacologic alternatives

- Methods
 - TENS
 - Acupuncture/acupressure
 - Psychological intervention
 - Polymeric membrane dressings (PMD)
- Mechanisms
 - Spinal cord modulation
 - Endogenous enkephalins
 - Vociceptor stimulation



Polymeric membrane dressings elicit antinociceptive properties^{19,20,21,22,23}

- Research demonstrated:
 - Reduction of pain caused by surgical incisions
 - Impacts neuropeptide signalling
 - Decrease of nociceptive activity
 - ↓ pain
 - ↓ burning/itching
 - ↓ ecchymosis
 - vinflammation



Polymeric membrane dressings elicit antinociceptive properties^{19,20,21,22,23}

- Research demonstrated:
 - Reduction of pain caused by surgical incisions
 - Impacts neuropeptide signalling
 - Decrease of nociceptive activity
 - ↓ pain
 - ↓ burning/itching
 - ↓ ecchymosis
 - vinflammation

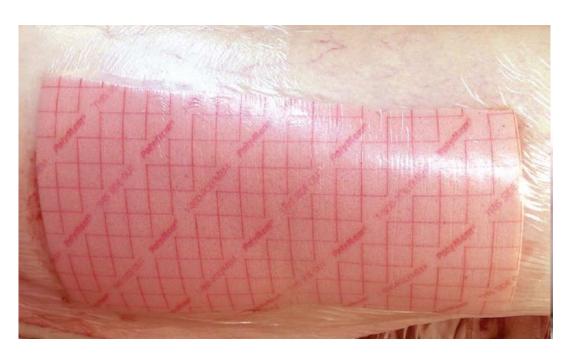
Mechanical Hyperalgesia Following Bilateral Incisions

Polymeric membrane dressings elicit antinociceptive properties^{19,20,21,22,23}

- Research demonstrated:
 - Reduction of pain caused by surgical incisions
 - Impacts neuropeptide signalling
 - Decrease of nociceptive activity
 - ↓ pain
 - ↓ burning/itching
 - ↓ ecchymosis
 - vinflammation

The visual: antinociceptive/inflammatory modulation actions – AND...

- High MVTR protective film
- Continuous cleansing w/surfactant
- Optimises moisture with
 - Superabsorbent and glycerol
- Open cell, hydrophilic PU membrane
- Conforms to irregular-shaped wounds



The visual: antinociceptive/inflammatory modulation actions – AND...

- High MVTR protective film
- Continuous cleansing w/surfactant
- Optimises moisture with
 - Superabsorbent and glycerol
- Open cell, hydrophilic PU membrane
- Conforms to irregular-shaped wounds

The visual: antinociceptive/inflammatory modulation actions – AND...

- High MVTR protective film
- Continuous cleansing w/surfactant
- Optimises moisture with
 - Superabsorbent and glycerol
- Open cell, hydrophilic PU membrane
- Conforms to irregular-shaped wounds

Initial and long-term effects of pain

- Wound pain ↑ psychological and physical stress³
- Contributes to patient and caregiver non-compliance with prescribed treatments⁴
- Non-compliance results in⁴:
 - ↑ risk of infection
 - ↑ risk for delayed healing
 - n morbidity and mortality
 - Overall ↑ in total costs to heal the wound

Benefits of non-pharmacologic alternatives

- Eliminates multiple sequelae including:
 - Dependency
 - GI/organ dysfunction
 - Additional painful procedures
 - Most allergic reactions
- Contributes positively to self-care initiatives
- May be successful when pharmacologic options have failed
- Can strategically target nociceptor signaling pathways
 - ↑ pain resolution opportunities

- The nociceptive signalling pathways are complex, beneficial and problematic at the same time
- The physiologic changes associated with the neurochemical signalling cascade directly impact the wound healing environment — especially the early or late onset of pain
- Therapeutic options for wound pain should include a focus on methods known to decrease nociceptor stimulation

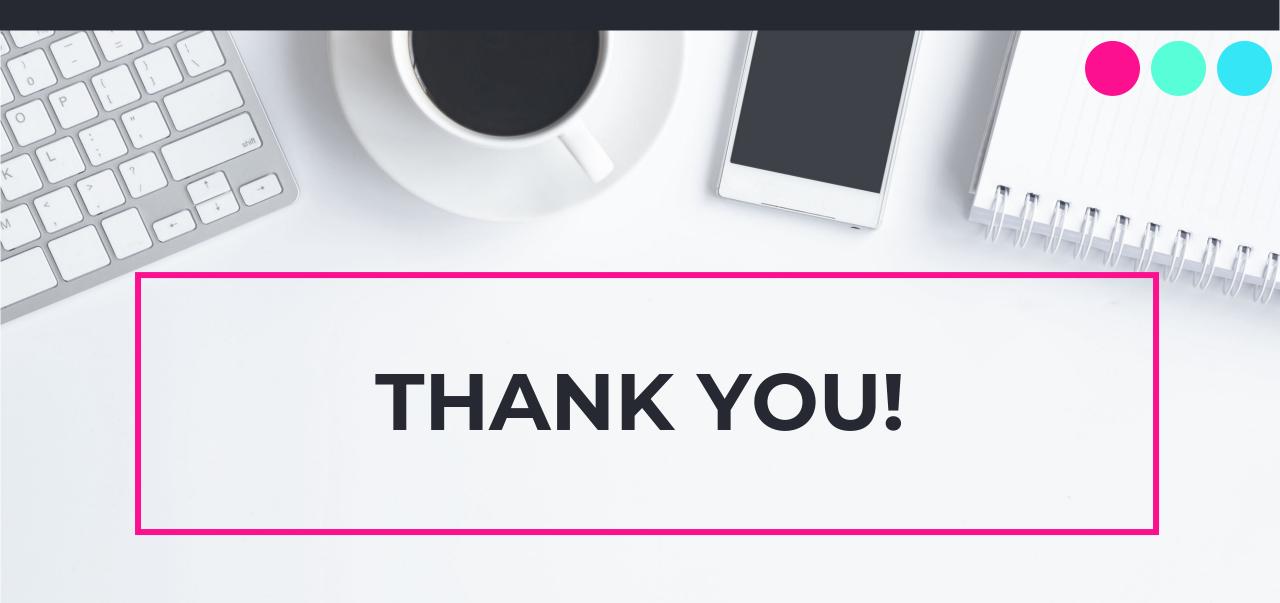
PolyMem dressings help to:

- Effectively manage and heal wounds
- Absorb fluid and provide a moist healing environment
- Relieve wound pain by inhibiting the action of some pain-sensing nerve fibres (nociceptors)¹⁹
- Reduce oedema, bruising and the spread of inflammation into surrounding undamaged tissues by altering the action of certain nerve endings¹⁹

For more information email us at marketing@hrhealthcare.co.uk

Available resources...

E-learning - explore the unique clinical benefits of Polymem, this module offers up to 30 minutes of CPD


<u>Clinical resources</u> - from brochures, user guides, clinical evidence to bespoke pieces, tailored to your requirements

<u>Patient information</u> - to help support patients at home

Visit:

www.hrhealthcare.co.uk/portfolio/polymem/

References

¹Venes, Donald, editor. "Pain." Taber's Medical Dictionary, 23rd edn. F.A. Davis Company, 2017. Taber's Online, www.tabers.com/tabersonline/view/Tabers-Dictionary/735288/all/pain.

²Treede RD (2018) The International Association for the Study of Pain definition of pain: as valid in 2018 as in 1979, but in need of regularly updated footnotes. *Pain Rep* **3(2)**: e643. Published 2018 Mar 5. doi:10.1097/PR9.0000000000000643

³Woo KY (2008) Meeting the challenges of wound-associated pain: anticipatory pain, anxiety, stress, and wound healing. *Ostomy Wound Management* **54(9):** 10–2

⁴Gardner SE, Abbott L, Fiala CA, Rakel BA (2017) Factors associated with high pain intensity during wound care procedures: A model. *Wound Rep Regen* **25(4):** 558–63. Official publication of the Wound Healing Society [and] the European Tissue Repair Society, https://doi.org/10.1111/wrr.12553

⁵Baral P, Udit S, Chiu IM (2019) Pain and immunity: implications for host defense. *Nat Rev Immunol* **19(7):** 433–47. doi:10.1038/s41577-019-0147-2

⁶Garland EL (2012) Pain processing in the human nervous system: a selective review of nociceptive and biobehavioral pathways. *Prim Care* **39(3):** 561–71. doi:10.1016/j.pop.2012.06.013

⁷ Minimizing pain at wound dressing-related procedures. A consensus document.' World Union of Wound Healing Societies' Initiative. London: MEP Ltd; 2004

References

⁸Sussman C, Bates-Johnson B (2007) *Wound Care: A Collaborative Practice Manual for Health Professionals.* 3rd edn. Baltimore: Lippincott Williams and Wilkins, 2007: 46, 250, 280–287.

⁹Venes, Donald, editor. "Nociception." Taber's Medical Dictionary, 23rd ed., F.A. Davis Company, 2017. Taber's Online, <u>www.tabers.com/tabersonline/view/Tabers-Dictionary/768665/all/nociception</u>.

¹⁰Mason P. Chapter 18 Somatosensation: Focus on Pain. In: *Medical Neurobiology*. Oxford University Press Inc. New York, NY, USA 2011

¹¹Yam MF, Loh YC, Tan CS, Khadijah Adam S, Abdul Manan N, Basir R (2018) General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. *Int J Molecular Sci* **19(8):** 2164. https://doi.org/10.3390/ijms19082164

¹²Price D (2007) Spinothalamic Tract Neurons, in Deep Dorsal Horn. In: Schmidt R, Willis W (eds) *Encyclopedia of Pain*. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29805-2_4173

¹³Mason P. Chapter 18 Somatosensation: Focus on Pain. In: *Medical Neurobiology*. Oxford University Press Inc. New York, NY, USA 2011

¹⁴Tompkins DA, Hobelmann JG, Compton P (2017) Providing chronic pain management in the "Fifth Vital Sign" Era: Historical and treatment perspectives on a modern-day medical dilemma. *Drug Alcohol Dependence* **173 Suppl 1:** S11–S21. https://doi.org/10.1016/j.drugalcdep.2016.12.00212

References

¹⁵Breivik H, Collett B, Ventafridda V, et al (2006) Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. *Eur J Pain* **10:** 287–333

¹⁶Winter J, Bevan S Campbell E (1995) Capsaicin and pain mechanisms. *Br J Anaesthesia* **75:** 157–68

¹⁷Tompkins DA, Hobelmann JG, Compton P (2017) Providing chronic pain management in the "Fifth Vital Sign" Era: Historical and treatment perspectives on a modern-day medical dilemma. *Drug Alcohol Dependence* **173 Suppl 1:** S11–S21. https://doi.org/10.1016/j.drugalcdep.2016.12.00212

¹⁸Breivik H, Collett B, Ventafridda V, et al (2006) Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. *Eur J Pain* **10:** 287–333

¹⁹Beitz AJ, Newman A, Kahn AR, Ruggles T, Eikmeier L (2004) A polymeric membrane dressing with antinociceptive properties: analysis with a rodent model of stab wound secondary hyperalgesia. *J Pain* **5(1):** 38–47. doi:10.1016/j.jpain.2003.09.003

²⁰Kahn AR, Sessions RW, Apasova EV (2000) A Superficial Cutaneous Dressing Inhibits Pain, Inflammation and Swelling in Deep Tissues. *Pain Med* **1(2):** 187

²¹Kim YJ, et al (1999) The Effects of PolyMem on Wound Healing. *J Korean Soc Plast Reconstr Surg* **109:** 1165–1172

²²Hayden JK, Cole BJ (2003) The effectiveness of a pain wrap compared to a standard dressing on the reduction of postoperative morbidity following routine knee arthroscopy: a prospective randomized single-blind study. *Orthopedics* **26(1):** 59–63

²³Beitz A, Kahn A. Ferris PolyMem Plus™ dressing (REF 0548) Initial Study Summary: University of Minnesota. April 23, 2001. Unpublished.

²⁴Haik J, Weissman O, Demetris S, et al (2012) *Polymeric membrane dressings for skin graft donor sites. Six years' experience on 1200 cases.* Poster. WUWUS, Japan

TO ACCESS YOUR CERTIFICATE VISIT:

www.gpn-live.co.uk/certificate